Refine Your Search

Topic

Author

Search Results

Technical Paper

Oxidation Catalytic Converter and Emulsified Fuel Effects on Heavy-Duty Diesel Engine Particulate Matter Emissions

2002-03-04
2002-01-1278
The effects of an oxidation catalytic converter (OCC), an emulsified fuel, and their combined effects on particle number and volume concentrations compared to those obtained when using a basefuel were studied. Particle size and particulate emission measurements were conducted at three operating conditions; idle (850 rpm, 35 Nm), Mode 11 (1900 rpm, 277 Nm) and Mode 9 (1900 rpm, 831 Nm) of the EPA 13 mode cycle. The individual effects of the emulsified fuel and the OCC as well as their combined effects on particle number and volume concentrations were studied at two different particle size ranges; the nuclei (less than or equal to 50 nm) and accumulation (greater than 50 nm) modes. An OCC loaded with 10 g/ft3 platinum metal (OCC1) and a 20% emulsified fuel were used for this study and a notable influence on the particle size with respect to number and volume distributions was observed.
Technical Paper

Oxidation Catalytic Converter and Emulsified Fuel Effects on Heavy-Duty Diesel Engine Emissions

2002-03-04
2002-01-1277
A study was conducted to assess the effects of a water-diesel fuel emulsion with and without an oxidation catalytic converter (OCC) on steady-state heavy-duty diesel engine emissions. Two OCCs with different metal loading levels were used in this study. A 1988 Cummins L10-300 heavy-duty diesel engine was operated at the rated speed of 1900 rpm and at 75% and 25% load conditions (EPA modes 9 and 11 respectively) of the 13 mode steady-state test as well as at idle. Raw exhaust emissions' measurements included total hydrocarbons (HC), oxides of nitrogen (NOx) and nitric oxide (NO). Diluted exhaust measurements included total particulate matter (TPM) and its primary constituents, the soluble organic (SOF), sulfate (SO42-) and the carbonaceous solids (SOL) fractions. Vapor phase organic compounds (XOC) were also analyzed. The SOF and XOC samples were analyzed for selected polynuclear aromatic hydrocarbons (PAHs).
Technical Paper

A One-Dimensional Computational Model for Studying the Filtration and Regeneration Characteristics of a Catalyzed Wall-Flow Diesel Particulate Filter

2003-03-03
2003-01-0841
A one-dimensional, two layer computational model was developed to predict the behavior of a clean and particulate-loaded catalyzed wall-flow diesel particulate filter (CPF). The model included the mechanisms of particle deposition inside the CPF porous wall and on the CPF wall surface, the exhaust flow field and temperature field inside the CPF, as well as the particulate catalytic oxidation mechanisms accounting for the catalyst-assisted particulate oxidation by the catalytic coating in addition to the conventional particulate thermal oxidation. The paper also develops the methodology for calibrating and validating the model with experimental data. Steady state loading experiments were performed to calibrate and validate the model.
Technical Paper

Modeling and Numerical Simulation of Diesel Particulate Trap Performance During Loading and Regeneration

2002-03-04
2002-01-1019
A 2-dimensional numerical model (MTU-FILTER) for a single channel of a honeycomb ceramic diesel particulate trap has been developed. The mathematical modeling of the filtration, flow, heat transfer and regeneration behavior of the particulate trap is described. Numerical results for the pressure drop and particulate mass were compared with existing experimental results. Parametric studies of the diesel particulate trap were carried out. The effects of trap size and inlet temperature on the trap performance are studied using the trap model. An approximate 2-dimensional analytical solution to the simplified Navier-Stokes equations was used to calculate the velocity field of the exhaust flow in the inlet and outlet channels. Assuming a similarity velocity profile in the channels, the 2-dimensional Navier-Stokes equations are approximated by 1-dimenisonal conservation equations, which is similar to those first developed by Bissett.
Technical Paper

Simulation of Non-Evaporating Diesel Sprays and Verification with Experimental Data

2002-03-04
2002-01-0946
Non-evaporating diesel sprays have been simulated utilizing the ETAB and the WAVE atomization and breakup models and have been compared with experimental data. The experimental penetrations and widths were determined from back-lit spray images and the droplet sizes have been measured by means of a Malvern particle sizer. The model evaluation criteria include the spray penetration, the spray width and the local droplet size. The comparisons have been performed for variations of the injection pressure, the gas density and the fuel viscosity. The fuel nozzle exit velocities used in the simulations have been computed with a special code that considers the effect of in-nozzle cavitation. The simulations showed good overall agreement with experimental data. However, the capabilities of the models to predict the droplet size for different fuels could be improved.
Technical Paper

Modeling Ignition and Premixed Combustion Including Flame Stretch Effects

2017-03-28
2017-01-0553
Objective of this work is the incorporation of the flame stretch effects in an Eulerian-Lagrangian model for premixed SI combustion in order to describe ignition and flame propagation under highly inhomogeneous flow conditions. To this end, effects of energy transfer from electrical circuit and turbulent flame propagation were fully decoupled. The first ones are taken into account by Lagrangian particles whose main purpose is to generate an initial burned field in the computational domain. Turbulent flame development is instead considered only in the Eulerian gas phase for a better description of the local flow effects. To improve the model predictive capabilities, flame stretch effects were introduced in the turbulent combustion model by using formulations coming from the asymptotic theory and recently verified by means of DNS studies. Experiments carried out at Michigan Tech University in a pressurized, constant-volume vessel were used to validate the proposed approach.
Technical Paper

Simulation of One-pass Dimethylether Production from Natural Gas for Potential Use in a NG/DME Dual-fuel CI Engine

2006-10-16
2006-01-3358
A model process to produce dimethylether (DME) from natural gas (NG) was simulated in a one-pass mode (no material recycle), assuming steady-state and chemical and physical equilibrium. NG conversion to synthesis gas (syngas) via steam reforming resulted in stoichiometric numbers of 2.97 along with vapor mole fraction extremes for carbon dioxide, methane, and water. These concentrations formed an eight-trial simulation grid of syngas compositions. Simulation of DME production was performed in a dual reactor configuration with methanol formation as the intermediate compound. Solutions resulting from the subsequent adiabatic dehydration of the methanol-rich phase showed a consistent DME composition (88%). The resulting solutions and unreacted syngas streams from simulation were examined for applicability to a dual-fuel NG/DME CI engine.
Technical Paper

Examination of Factors Impacting Unaccounted Fuel Post GDI Fuel Injector Closing

2018-04-03
2018-01-0300
The characteristics of gasoline sprayed directly into combustion chambers are of critical importance to engine out emissions and combustion system development. The optimization of the spray characteristics to match the in-cylinder flow field, chamber geometry, and spark location is a vital tasks during the development of an engine combustion strategy. Furthermore, the presence of liquid fuel during combustion in Spark-Ignition (SI) engines causes increased hydro-carbon (HC) emissions. Euro 6, LEVIII, and US Tier 3 emissions regulations reduce the allowable particulate mass significantly from the previous standards. LEVIII standards reduce the acceptable particulate emission to 1 mg/mile. A good DISI strategy vaporizes the correct amount of fuel just in time for optimal power output with minimal emissions. The opening and closing phases of DISI injectors are crucial to this task as the spray produces larger droplets during both theses phases.
Technical Paper

A Combustion Model for Multi-Component Fuels Based on Reactivity Concept and Single-Surrogate Chemistry Representation

2018-04-03
2018-01-0260
High fidelity engine simulation requires realistic fuel models. Although typical automotive fuels consist of more than few hundreds of hydrocarbon species, researches show that the physical and chemical properties of the real fuels could be represented by appropriate surrogate fuel models. It is desirable to represent the fuel using the same set of physical and chemical surrogate components. However, when the reaction mechanisms for a certain physical surrogate component is not available, the chemistry of the unmatched physical component is described using that of a similar chemical surrogate component at the expense of accuracy. In order to reduce the prediction error while maintaining the computational efficiency, a method of on-the-fly reactivity adjustment (ReAd) of chemical reaction mechanism along with fuel re-distribution based on reactivity is presented and tested in this study.
Technical Paper

Procedure Development and Experimental Study of Passive Particulate Matter Oxidation in a Diesel Catalyzed Particulate Filter

2012-04-16
2012-01-0851
The passive oxidation of particulate matter (PM) in a diesel catalyzed particulate filter (CPF) was investigated in a series of experiments performed on two engines. A total of ten tests were completed on a 2002 Cummins 246 kW (330 hp) ISM and a 2007 Cummins 272 kW (365 hp) ISL. Five tests were performed on each engine to determine if using engine technologies certified to different emissions regulations has an impact on the passive oxidation characteristics of the PM. A new experimental procedure for passive oxidation testing was developed and implemented for the experiments. In order to investigate the parameters of interest, the engines were initially operated at a steady state loading condition where the PM concentrations, flow rates, and temperatures were such that the accumulation of PM within the CPF was obtained in a controlled manner. This engine operating condition was maintained until a CPF PM loading of 2.2 ±0.2 g/L was obtained.
Technical Paper

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

2012-04-16
2012-01-0837
A 2007 Cummins ISL 8.9L direct-injection common rail diesel engine rated at 272 kW (365 hp) was used to load the filter to 2.2 g/L and passively oxidize particulate matter (PM) within a 2007 OEM aftertreatment system consisting of a diesel oxidation catalyst (DOC) and catalyzed particulate filter (CPF). Having a better understanding of the passive NO₂ oxidation kinetics of PM within the CPF allows for reducing the frequency of active regenerations (hydrocarbon injection) and the associated fuel penalties. Being able to model the passive oxidation of accumulated PM in the CPF is critical to creating accurate state estimation strategies. The MTU 1-D CPF model will be used to simulate data collected from this study to examine differences in the PM oxidation kinetics when soy methyl ester (SME) biodiesel is used as the source of fuel for the engine.
Technical Paper

Impact of Ignition Energy Phasing and Spark Gap on Combustion in a Homogenous Direct Injection Gasoline SI Engine Near the EGR Limit

2013-04-08
2013-01-1630
For spark-ignition gasoline engines operating under the wide speed and load conditions required for light duty vehicles, ignition quality limits the ability to minimize fuel consumption and NOx emissions via dilution under light and part load conditions. In addition, during transients including tip-outs, high levels of dilution can occur for multiple combustion events before either the external exhaust gas can be adjusted and cleared from the intake or cam phasing can be adjusted for correct internal dilution. Further improvement and a thorough understanding of the impact of the ignition system on combustion near the dilution limit will enable reduced fuel consumption and robust transient operation. To determine and isolate the effects of multiple parameters, a variable output ignition system (VOIS) was developed and tested on a 3.5L turbocharged V6 homogeneous charge direct-injection gasoline engine with two spark plug gaps and three ignition settings.
Technical Paper

Experimental and Modeling Study of a Diesel Oxidation Catalyst (DOC) under Transient and CPF Active Regeneration Conditions

2013-04-08
2013-01-1046
In this study, a DOC catalyst was experimentally studied in an engine test cell with a2010 Cummins 6.7L ISB diesel and a production aftertreatment system. The test matrix consisted of steady state, active regeneration with in-cylinder fuel dosing and transient conditions. Conversion efficiencies of total hydrocarbon (THC), CO, and NO were quantified under each condition. A previously developed high-fidelity DOC model capable of predicting both steady state and transient active regeneration gaseous emissions was calibrated to the experimental data. The model consists of a single 1D channel where mass and energy balance equations were solved for both surface and bulk gas regions. The steady-state data were used to identify the activation energies and pre-exponential factors for CO, NO and HC oxidation, while the steady-state active regeneration data were used to identify the inhibition factors. The transient data were used to simulate the thermal response of the DOC.
Technical Paper

A New Multi-point Active Drawbead Forming Die: Model Development for Process Optimization

1998-02-01
980076
A new press/die system for restraining force control has been developed in order to facilitate an increased level of process control in sheet metal forming. The press features a built-in system for controlling drawbead penetration in real time. The die has local force transducers built into the draw radius of the lower tooling. These sensors are designed to give process information useful for the drawbead control. This paper focuses on developing models of the drawbead actuators and the die shoulder sensors. The actuator model is useful for developing optimal control methods. The sensor characterization is necessary in order to develop a relationship between the raw sensor outputs and a definitive process characteristic such as drawbead restraining force (DBRF). Closed loop control of local specific punch force is demonstrated using the die shoulder sensor and a PID controller developed off-line with the actuator model.
Technical Paper

An Experimental Study of Active Regeneration of an Advanced Catalyzed Particulate Filter by Diesel Fuel Injection Upstream of an Oxidation Catalyst

2006-04-03
2006-01-0879
Passive regeneration (oxidation of particulate matter without using an external energy source) of particulate filters in combination with active regeneration is necessary for low load engine operating conditions. For low load conditions, the exhaust gas temperatures are less than 250°C and the PM oxidation rate due to passive regeneration is less than the PM accumulation rate. The objective of this research was to experimentally investigate active regeneration of a catalyzed particulate filter (CPF) using diesel fuel injection in the exhaust gas after the turbocharger and before a diesel oxidation catalyst (DOC) and to collect data for extending the MTU 1-D 2-layer model to include the simulation of active regeneration. The engine used in this study was a 2002 Cummins ISM turbo charged 10.8 L heavy duty diesel engine with cooled EGR. The exhaust after-treatment system consisted of a Johnson Matthey DOC and CPF (a CCRT®).
Technical Paper

Life Assessment of PM, Gaseous Emissions, and Oil Usage in Modern Marine Outboard Engines

2004-09-27
2004-32-0092
Recently, outboard engine technology has advanced significantly. With these new technologies comes a substantial improvement in emissions compared to traditional carbureted two-stroke engines. Some two-stroke gasoline direct injection (GDI) marine outboard engines are now capable of meeting California Air Resources Board 2008 Ultra-Low emissions standards. With improvement of gaseous emissions, studies are now being conducted to assess particulate matter (PM) emissions from all new technology marine outboard engines which include both four-stroke and two-stroke designs. Methods are currently being developed to determine the best way to measure PM from outboard engines. This study assesses gaseous and PM emissions, mutagenic activity of PM and oil consumption of two different technologies over the useful life of the engines.
Technical Paper

Evaluation of Diesel Spray-Wall Interaction and Morphology around Impingement Location

2018-04-03
2018-01-0276
The necessity to study spray-wall interaction in internal combustion engines is driven by the evidence that fuel sprays impinge on chamber and piston surfaces resulting in the formation of wall films. This, in turn, may influence the air-fuel mixing and increase the hydrocarbon and particulate matter emissions. This work reports an experimental and numerical study on spray-wall impingement and liquid film formation in a constant volume combustion vessel. Diesel and n-heptane were selected as test fuels and injected from a side-mounted single-hole diesel injector at injection pressures of 120, 150, and 180 MPa on a flat transparent window. Ambient and plate temperatures were set at 423 K, the fuel temperature at 363 K, and the ambient densities at 14.8, 22.8, and 30 kg/m3. Simultaneous Mie scattering and schlieren imaging were carried out in the experiment to perform a visual tracking of the spray-wall interaction process from different perspectives.
Technical Paper

Using a DNS Framework to Test a Splashed Mass Sub-Model for Lagrangian Spray Simulations

2018-04-03
2018-01-0297
Numerical modeling of fuel injection in internal combustion engines in a Lagrangian framework requires the use of a spray-wall interaction sub-model to correctly assess the effects associated with spray impingement. The spray impingement dynamics may influence the air-fuel mixing and result in increased hydrocarbon and particulate matter emissions. One component of a spray-wall interaction model is the splashed mass fraction, i.e. the amount of mass that is ejected upon impingement. Many existing models are based on relatively large droplets (mm size), while diesel and gasoline sprays are expected to be of micron size before splashing under high pressure conditions. It is challenging to experimentally distinguish pre- from post-impinged spray droplets, leading to difficulty in model validation.
Technical Paper

The Effects of Fuel Sulfur Concentration on Regulated and Unregulated Heavy-Duty Diesel Emissions

1993-03-01
930730
The effects of fuel sulfur concentration on heavy-duty diesel emissions have been studied at two EPA steady-state operating conditions, mode 9 (1900 RPM, 75% Load) and mode 11(1900 RPM, 25% Load). Data were obtained using one fuel at two sulfur levels (Low Sulfur, LS = 0.01 wt% S and Doped Low Sulfur DS = 0.29 wt% S). All tests were conducted using a Cummins LTA10-300 heavy-duty diesel engine. No significant changes were found for the nitrogen oxides (NOx), soluble organic fractions (SOF) and XAD-2 (a copolymer of styrene and divinylbenzene) organic component (XOC) due to the fuel sulfur level increase at either engine mode. The hydrocarbon (HC) levels were not significantly affected by sulfur at mode 9; however, at mode 11 the HC levels were reduced by 16%. The total particulate matter (TPM) levels increased by 17% at mode 11 and by 24% at mode 9 (both significantly different).
Technical Paper

Drawbeads in Sheet Metal Stamping - A Review

1997-02-24
970986
The paper reviews the role of drawbeads in sheet metal stamping. The design of drawbeads is discussed in depth, with treatment of different bead cross sections, bead end shapes, and bead materials. International standards and practices are included. This is followed by the historical development of the modeling of the drawbead restraining force, starting with basic equilibrium approaches, and leading to the use of the finite element method which permits the study of drawbead effects on sheet metal flow in three dimensions. Finally, the potential of active drawbeads is described based upon ongoing research which is directed toward closed-loop computer control of the stamping process through adjustment of the drawbead penetration.
X